
Bookkeeping --> accounting --> balance --> state
Bookkeeping is the recording of financial transactions, and is part of the process
of accounting in business.
Transactions include purchases, sales, receipts and payments by an individual person or an
organization/corporation.
There are several standard methods of bookkeeping, including the single-entry and double-entry
bookkeeping systems.
From <https://en.wikipedia.org/wiki/Bookkeeping>
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511

Business Resources:
Authorized capital
Credit
Fixed Assets
Costs
Incomes

Op.No Input
Incomes

Output
Expenses

Balance
Amount (BA)

State
No

0 0 0 0 0

1 5000 0 5000 1

2 0 1000 4000 2

State 0
BA=0

State 1
BA=5000

State 2
BA=4000

Op. No 1 Op. No 2

Ethereum is a blockchain with a computer embedded in it. It is the foundation for building Dapps and
organizations in a decentralized, permissionless, censorship-resistant way.
In the Ethereum universe, there is a single, canonical computer called the Ethereum Virtual Machine - EVM
whose state everyone on the Ethereum network agrees on. Everyone who participates in the Ethereum
network (every Ethereum node) keeps a copy of the state of this computer. Additionally, any participant can
broadcast a request for this computer to perform arbitrary computation. Whenever such a request is broadcast,
other participants on the network verify, validate, and carry out ("execute") the computation. This execution
causes a state change in the EVM, which is committed and propagated throughout the entire network.
Requests for computation are called transaction requests; the record of all transactions and the EVM's present
state gets stored on the blockchain, which in turn is stored and agreed upon by all nodes.
Cryptographic mechanisms ensure that once transactions are verified as valid and added to the blockchain,
they can't be tampered with later. The same mechanisms also ensure that all transactions are signed and
executed with appropriate "permissions" (no one should be able to send digital assets from Alice's account,
except for Alice herself).

`116_006_Ethereum_5-001

 `116_006_Ethereum_5-001 Page 1

https://en.wikipedia.org/wiki/Accounting
https://en.wikipedia.org/wiki/Business
https://en.wikipedia.org/wiki/Single-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Double-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Bookkeeping
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511

Ethereum blockchain cryptocurrency is Ether - ETH
It is the native cryptocurrency of Ethereum. The purpose of ETH is to allow for a market for computation.
Such a market provides an economic incentive for participants to verify and execute transaction requests and
provide computational resources to the network.
Any participant who broadcasts a transaction request must also offer some amount of ETH to the network as a
bounty. The network will burn part of the bounty and award the rest to whoever eventually does the work of
verifying the transaction, executing it, committing it to the blockchain, and broadcasting it to the network.
The amount of ETH paid corresponds to the resources required to do the computation. These bounties also
prevent malicious participants from intentionally clogging the network by requesting the execution of infinite
computation or other resource-intensive scripts, as these participants must pay for computation resources.

In addition ETH is also used to provide crypto-economic security to the network in three main ways:
1) it is used as a means to reward validators who propose blocks or call out dishonest behavior by other
validators;
2) It is staked by validators, acting as collateral against dishonest behavior—if validators attempt to
misbehave their ETH can be destroyed;
3) it is used to weigh 'votes' for newly proposed blocks, feeding into the fork-choice part of the consensus
mechanism.

Execution model
Now, we’ll look at how the transaction actually executes within the VM.
The part of the protocol that actually handles processing the transactions is Ethereum’s own in EVM.
The EVM is a Turing complete virtual machine, as defined earlier. The only limitation the EVM has that a typical
Turing complete machine does not is that the EVM is intrinsically bound by gas. Thus, the total amount of computation
that can be done is intrinsically limited by the amount of gas provided.

Ethereum Virtual Machine (EVM) | ethereum.org

 `116_006_Ethereum_5-001 Page 2

https://ethereum.org/developers/docs/evm/

m1=2000

m2=3000

m3=1000

m4=4000

PrKA=x
PuKA=a

UTxO

A
B1

E

PrKE=z
PuKE=e

B2

Transaction - Tx in blockchain

The state of Ethereum has millions of transactions. These transactions are grouped into
“blocks.” A block contains a series of transactions, and each block is chained together
with its previous block.

To cause a transition from one state to the next, a transaction must be valid.
For a transaction to be considered valid, it must go through a validation process known (e.g. as mining).
Validation is when a validator expend their compute resources to create a block of valid transactions.

PuKA=a PrKA=x

PrK

 `116_006_Ethereum_5-001 Page 3

Ethereum system is comprised of:

accounts•

state•

gas and fees•

transactions•

blocks•

transaction execution•

validation: Proof of Stake - PoS•

Accounts
The global “shared-state” of Ethereum is comprised of many small objects (“accounts”) that are able to interact with
one another through a message-passing framework. Each account has a state associated with it and a 20-byte address.
An address in Ethereum is a 160-bit identifier that is used to identify any account.

Validator accepts the Tx

Address of account

Addresses
Ethereum addresses are composed of the prefix "0x" (a common identifier for hexadecimal) concatenated
with the rightmost 20 bytes of the Keccak-256 hash of the ECDSA public key.
The curve used in ECDSA is named as secp256k1.
In hexadecimal, two digits represent a byte, and so addresses contain 40 hexadecimal digits after the "0x".
E.g.,
0xb794f5ea0ba39494ce839613fffba74279579268
Contract addresses are in the same format, however, they are determined by sender and creation
transaction nonce.
From <https://en.wikipedia.org/wiki/Ethereum>

 `116_006_Ethereum_5-001 Page 4

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Ethereum

Two types of account

There are two types of accounts:

Externally owned accounts, which are controlled by private keys and have no code associated with them.•
Contract accounts, which are controlled by their contract code and have code associated with them.•

Externally owned accounts vs. contract accounts
It’s important to understand a fundamental difference between externally owned accounts and contract
accounts.
An externally owned account can send messages to other externally owned accounts OR to other
contract accounts by creating and signing a transaction using its private key.
A message between two externally owned accounts is simply a value transfer.
But a message from an externally owned account to a contract account activates the contract account’s code,
allowing it to perform various actions (e.g. transfer tokens, write to internal storage, mint new tokens,
perform some calculation, create new contracts, etc.).
Unlike externally owned accounts, contract accounts can’t initiate new transactions on their
own. Instead, contract accounts can only fire transactions in response to other transactions they have
received (from an externally owned account or from another contract account). We’ll learn more about
contract-to-contract calls in the.

KECCAK-256 H-function

 `116_006_Ethereum_5-001 Page 5

https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use

(CA)

Therefore, any action that occurs on the Ethereum blockchain is always set in motion by transactions fired
from externally controlled accounts.

 `116_006_Ethereum_5-001 Page 6

Account state
The account state consists of four components, which are present regardless of the type of account:

nonce: If the account is an externally owned account, this number represents the number of transactions
sent from the account’s address. If the account is a contract account, the nonce is the number of contracts
created by the account.

•

balance: The number of Wei owned by this address. There are 1018 Wei per Ether.•

storageRoot: A hash of the root node of a Merkle Patricia tree (we’ll explain Merkle trees later on). This
tree encodes the hash of the storage contents of this account, and is empty by default.

•

codeHash: The hash of the EVM (more on this later) code of this account. For contract accounts, this is the
code that gets hashed and stored as the codeHash. For externally owned accounts, the codeHash field is the
hash of the empty string.

•

 `116_006_Ethereum_5-001 Page 7

One important details about the account state is that all fields (except the codeHash) are
mutable.
For example, when one account sends some Ether to another, the nonce will be incremented and
the balance will be updated to reflect the new balance.
One of the consequences of the codeHash being immutable is that if you deploy a contract with a
bug, you can't update the same contract. You need to deploy a new contract (the buggy version
will be available forever). This is why it is important to use Truffle to develop and test your smart
contracts and follow the best practices when working with Solidity.

The Account Storage trie is Merkle-Patricia Trie where the data associated with an account
is stored.
This is only relevant for Contract Accounts,
For EOAs the storageRoot is empty and the codeHash is the hash of an empty string.
All smart contract data is persisted in the account storage trie as a mapping between 32-bytes
integers.
We won’t discuss in details how the contract data is persisted in the account state trie.
If you really want to learn about the internals, I suggest reading this post.
The hash of an account storage root node is persisted in the storageRoot field in the account state
of the respective account.

Ethereum can also be seen as a stack of transactions.
Stack of transactions --> Ledger

m1=2000

m2=3000

m3=1000

m4=4000

PrKA=x
PuKA=a

UTxO

A
B1

E

PrKE=z
PuKE=e

B2

Transaction - Tx in blockchain

Merkle-Patricia Trie
 Tree

Transactions are what makes the state change from the current state to the next state.
In Ethereum, we have three types of transactions:

Transactions that transfer value between two EOAs, e.g., change the sender and receiver
account balances

1.

Transactions that send a message call to a contract, e.g., set a value in the smart contract 2.

 `116_006_Ethereum_5-001 Page 8

http://truffleframework.com/
https://consensys.github.io/smart-contract-best-practices/software_engineering/#upgrading-broken-contracts
https://medium.com/coinmonks/a-practical-walkthrough-smart-contract-storage-d3383360ea1b

The fields of a transaction:
Nonce: Number of transactions sent by the account that created the transaction.•
gasPrice: Value in Wei that will be paid per unit of gas for the computation costs of
executing this transaction.

•

gasLimit: Maximum amount of gas to be used while executing this transaction. In the case
if limit is exceeded …

•

to: If this transaction is transferring Ether, address of the EOA account that will receive a
value transfer.

•

If this transaction is sending a message to a contract (e.g, calling a method in the smart
contract), this is address of the contract. If this transactions is creating a contract, this value
is always empty.
value: If this transaction is transferring Ether, amount in Wei that will be transferred to the
recipient account.

•

Fields of a transaction

Transactions that send a message call to a contract, e.g., set a value in the smart contract
by sending a message call that executes a setter method

2.

Transactions that deploy a contract (therefore, create an account, the contract account3.
Technically, types 1 and 2 are the same. transactions that send message calls that affect an
account state, either EOA or contract accounts. But is it easier to think about them as three
different types

 `116_006_Ethereum_5-001 Page 9

recipient account.
•

If this transaction is sending a message to a contract, amount of Wei payable by the smart
contract receiving the message.
If this transaction is creating a contract, this is the amount of Wei that will be added to the
balance of the created contract.
v, r, s: Values used in the cryptographic signature of the transaction used to determine the
sender of the transaction: v - version; r - first e-signature component; s - second e-
signature component.

•

data: (only for value transfer and sending a message call to a smart contract)•
Input data of the message call (e.g, imagine you are trying to execute a setter method in
your smart contract, the data field would contain the identifier of the setter method and the
value that should be passed as parameter).
init: (only for contract creation)•
The EVM-code utilized for initialization of the contract.

Some fields like the data field or the init field require you to have a deeper understanding of
the internals of Ethereum to really understand what they mean and how to use them. This is
not the time to deeply understand any of these fields.
Not surprisingly, all transactions in a block are stored in a trie. And the root hash of this trie is
stored in the... block header! Let's take a look into the anatomy of an Ethereum block.

 `116_006_Ethereum_5-001 Page 10

https://medium.com/@rsripathi781/6-payable-functions-in-solidity-smartcontract-ethereum-d2535e346dc1
https://medium.com/@hayeah/diving-into-the-ethereum-vm-part-5-the-smart-contract-creation-process-cb7b6133b855

